

ANALYTICAL LABORATORIES

REFERENCE:

A member of the

Australasian Soil and Plant Analysis Council

LARRY PALMER

Tel: (03) 9701 6007 Fax: (03) 9701 5712

REPORT ON SAMPLE OF SOIL

1712131404 FILE NO: **DATE ISSUED:** 19/12/2017

> **GEOFF ROBERTSON CLIENT ID:** ROB146 418 STOWPORT ROAD PHONE : 0418 141 540

STOWPORT, TAS 7321 FAX:

E-mail: geoff@farmnutritiontas.com.au

SAMPLE ID: HOME PADDOCK (0.78HA) **REFERENCE PHONE:** 03 6363 1278 **DEPTH OF SAMPLE (cm):** DATE RECEIVED: 14/12/2017 ANALYSIS REQUIRED : Full (ST-1) TP

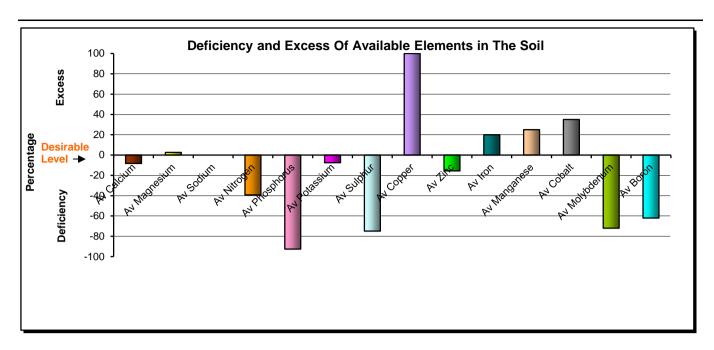
LAND USE: PASTURE

ITEMS

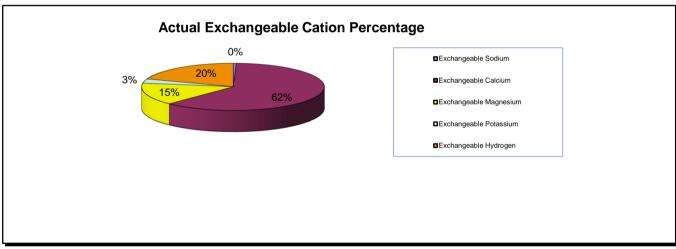
ITEMS			RESULTS	DESIRABLE LEVEL
pH(1:5 Water) [']			7.1	5.5-7.5
pH(1:5 0.01M CaCl₂) ′			6.61	
Electrical Conductivity	EC	μS/cm	163	< 300
TOTAL SOLUBLE SALT	TSS	ppm	537.9	< 990
AVAILABLE CALCIUM'	Ca	ppm	3580	3903
AVAILABLE MAGNESIUM	Mg	ppm	530.4	517
AVAILABLE SODIUM	Na	ppm	34.5	< 330
AVAILABLE NITROGEN	N	ppm	15.8	26
AVAILABLE PHOSPHORUS	Р	ppm	2.59	35
AVAILABLE POTASSIUM	K	ppm	323.7	350
AVAILABLE SULPHUR '	S	ppm	4.02	16 - 20
AVAILABLE COPPER	Cu	ppm	6.8	2
AVAILABLE ZINC	Zn	ppm	5.91	7
AVAILABLE IRON	Fe	ppm	36	> 30
AVAILABLE MANGANESE	Mn	ppm	25	> 20
AVAILABLE COBALT	Co	ppm	1.35	> 1.0
AVAILABLE MOLYBDENUM	Мо	ppm	0.28	> 1.0
AVAILABLE BORON	В	ppm	0.38	=> 1.0
TOTAL ORGANIC MATTER	OM	%	11	> 10
TOTAL ORGANIC CARBON	OC	%	5.5	> 5
TOTAL PHOSPHORUS	TP	ppm	1280	
EXTRACTABLE ALUMINIUM	Al	ppm	not required	
TOTAL NITROGEN	N	%	not required	
TOTAL CALCIUM	Ca	ppm	not required	
TOTAL MAGNESIUM	Mg	ppm	not required	
CHLORIDE	CI	ppm	not required	
AVAILABLE SILICA	Si	ppm	not required	

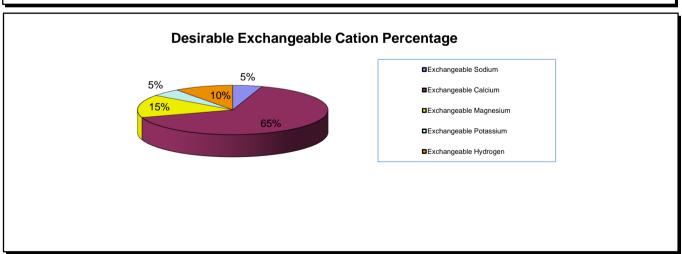
[†]This laboratory has been awarded a Certificate of Proficiency for specific soil and plant tissue analyses by the

Australiasian Soil and Plant Analysis Council (ASPAC). Test for which proficiency has been demonstrated are highlighted in this report.


FILE NO: 1712131404 LAND USE: PASTURE

ITEMS			RESULTS	DESIRABLE LEVEL
EXCHANGEABLE CALCIUM	Ca	meq/100g of soil	16.96	17.86
EXCHANGEABLE MAGNESIUM	Mg	meq/100g of soil	4.19	4.12
EXCHANGEABLE SODIUM	Na	meq/100g of soil	0.14	< 1.37
EXCHANGEABLE POTASSIUM	K	meq/100g of soil	0.79	1.37
EXCHANGEABLE HYDROGEN	Н	meq/100g of soil	10.9	
ADJ. EXCHANG. HYDROGEN	Н	meq/100g of soil	5.4	< 4.12
CATION EXCHANGE CAPACITY	CEC		32.98	
ADJUSTED CEC	Adj.CEC		27.48	
EXCH. SODIUM PERCENTAGE	ESP		0.42	< 5
CALCIUM / MAGNESIUM RATIO	Ca/Mg		4.05	2 - 4
BASE SATURATION PERCENTAGE	BSP		68	


ITEMS		PERCENTAGE OF ADJUSTED CEC	DESIRABLE LEVEL
EXCHANGEABLE CALCIUM	Са	61.7	65-70%
EXCHANGEABLE MAGNESIUM	Mg	15.2	12-15%
EXCHANGEABLE SODIUM	Na	0.5	0.5-5%
EXCHANGEABLE POTASSIUM	K	2.9	3-5%
EXCHANGEABLE HYDROGEN	Н	19.7	<20%


PREVIOUS APPLICATIO	NS (IF APPLICABLE)	DATE OF APPLICATION
GYPSUM APPLIED	t/ha	
LIME APPLIED	t/ha	
DOLOMITE APPLIED	t/ha	
Magnesium Sulphate	kg/ha	

FILE NO: 1712131404 **LAND USE**: PASTURE **PAGE NO**: 3

- Phosphorus fixation effects if Iron is more than 300 ppm
- Manganese will be at toxicity level if it reaches 500 ppm

FILE NO: 1712131404 **LAND USE**: PASTURE **PAGE NO**: 4

RECOMMENDATION

181 kg of Calcium is needed to raise the Available Calcium to 68% and/or Exchangeable Calcium to 65%

GYPSUM REQUIREMENT

LIME REQUIREMENT

DOLOMITE REQUIREMENT

0.11 t/ha

0.39 t/ha

0 t/ha

TOTAL FERTILISER REQUIREMENT (kg/ha)

MAGNESIUM SULPHATE **0** kg/ha or MAGNESIUM OXIDE **0** kg/ha

10 32 26 25

Ν

Κ

S

with Trace Elements:

- Gypsum Requirement is to increase the Calcium and Sulphur and decrease the Exchangeable Sodium and or the Exchangeable Magnesium in the soil. For best results, use only 'Grade 1' Gypsum.
- Lime Requirement is to increase the Calcium and decrease the hydrogen in the soil
- Lime Requirement is based on Lime containing 40% Calcium.
- We advice that Lime should be applied first in Autumn then followed by Fertiliser in Spring.

We recommend that 25 kg/ha of Potassium should be applied after cutting of Hay.

FILE NO: 1712131404 LAND USE: PASTURE PAGE NO: 5

Desirable levels for Exchangeable Cations (Ca, Mg, Na, K and H) is directly related to the constant desirable level percentages (see pie graph page 3) and the soil's Adjusted CEC. The other elements vary in relation to the soil's CEC, landuse, leaching requirement and yield.

If soil pH (water) is below 5.7, trace elements should not be applied until Lime and/or Dolomite applications have had time to raise the pH to this level. For soils with pH (water) of 8.0 or more, apply trace elements as foliar spray only.

The recommendations for Gypsum/Lime/Dolomite/MgSO₄ on page 4 are essential to the process of achieving optimum soil balance. All other recommendations in this report (NPKS & trace elements) have been formulated on the assumption that the Gypsum/Lime/Dolomite/MgSO₄ have been applied and given sufficient time for their effects to develop. In most cases, six months will be required between application of cation balance correction and fertilisers, however, more time may be required in lower rainfall zones or dry seasons. In areas with shallow saline watertables and NO subsurface drainage, no Gypsum should be applied (even if recommended here) until adequate drainage can be provided. It should also be noted that the amounts recommended depend, in part, on the stated sample depth.

For all required materials - Gypsum/Lime/Dolomite/Magnesium Sulphate/Magnesium Oxide (where surface application is necessary and irrigation is not available), the total application should be limited to roughly 2.5 t/ha per year. This limitation does not apply where materials can be cultivated or irrigated into the soil.

Important note: For all reports that have landuse as "Pasture". If molybdenum is needed to be applied, then copper needs to be applied as well even if available copper is high. Copper and molybdenum are antagonistic to each other so if molybdenum is applied without copper, molybdenum will deplete copper leading to copper deficiency in animals. The main problem occurs when animals graze treated pasture soon after application. For this reason, if you are worried about applying copper when there is enough in your soil, you can apply molybdenum alone BUT you MUST keep animals off the pasture for at least 6 weeks (longer if there has been little or no rain).

SWEP does not recommend or promote specific products, so all recommendations are given in kg/ha of actual nutrient. These must be converted into applications of fertiliser. For assistance in doing this, consult your local supplier.

AN	NALYTICAL METHODS	
Items	Methods	
pH (1:5 Water)	4A1	
pH (1:5 CaCl2)	4B1	
Electrical conductivity (1:5 Water)	3A1	
Total Soluble Salts	Calculation from Electrical conductivity	
Exchangeable Calcium, Magnesium, Sodium, Potassium	15D3 or 15A1	
Exchangeable Hydrogen	Barium Chloride-Triethanolamine method*	
Available Nitrogen	Copper-cadmium reductor column at a pH of 8.0	
Available Phosphorus	Olsen extractable, 9C2a	
Available Sulphur	KCl 40, 10D1	
Available Copper, Zinc, & Cobalt	EDTA, 12B1	
Available Molybdenum	Ammonium Oxalate-Oxalic acid-di-iso propyl ether	
Available Iron & Manganese	method of E.H. Mikhail (1981)	
Available Boron	12C2	
Total Organic Matter	modified Walkley & Black, 6A1	
Total Phosphorus, Calcium, Magnesium	Acid digestion	
Extractable Aluminium	15G1	
Total Nitrogen	Dumas method, 7A5	
Chloride	5A1	
Available Silica	Dithionite-Citrate method**	

NB. For available Iron and Manganese, SWEP uses the method developed by E.H. Mikhail (1980) due to the tendency for the standard EDTA method to produce erroneously high results.

For numbered test methods:

Rayment, G.E. & Lyons, D.J. (2011). Soil Chemical Methods - Australasia. CSIRO Publishing, 150 Oxford Street, Collingwood Vic 3066, Australia.

AQIS Approved Quarantine Site.

Victorian DPI acccreditation to receive samples from PIZ and PCN infested zones.

Disclaimer: All results and/or recommendations in this report are made in good faith and are based on past and ongoing research by SWEP Pty Ltd. However, limitations such as the vagaries of climatic conditions mean that we cannot guarantee production of any crop by the use of this test and associated recommendations, and cannot be held responsible for any results obtained.

SWEP Analytical Laboratories

Website: www.swep.com.au

SWEP Analytical Laboratories 45 - 47 / 174 Bridge Road Keysborough VIC 3173 Australia

^{*}Peech, M., Cowan, R.L. & Baker, J.H. (1962). Soil Science Society American Procedures, A critical studyof the Barium chloride Triethanolamine and ammonium acetate methods for determining exchangeable Hydrogen of soils.

^{**} Ross, G.J. & Wang, C. (1993). Soil Sampling and Methods of Analysis, CRC Press, Boca Raton, Florida, USA.